Counting Quaternion and Dihedral Braces and the Associated Hopf-Galois Structures

Nigel Byott (University of Exeter)
joint work with Fabio Ferri

(funded by EPSRC grants EP/V005995/1 and EP/W52265X/1)

Omaha (virtually), 29 May 2024

Introduction

Conjecture: Guarnieri \& Vendramin (2017):
Let $m \geq 3$ and let $q(4 m)$ be the number of braces B whose multiplicative group (B, \circ) is a generalised quaternion group of order $4 m$. Then

$$
q(4 m)= \begin{cases}2 & \text { if } m \text { is odd } \\ 7 & \text { if } m \equiv 0 \quad(\bmod 8) \\ 9 & \text { if } m \equiv 4 \quad(\bmod 8) \\ 6 & \text { if } m \equiv 2 \quad(\bmod 8) \text { or } m \equiv 6 \quad(\bmod 8)\end{cases}
$$

Introduction

Conjecture: Guarnieri \& Vendramin (2017):
Let $m \geq 3$ and let $q(4 m)$ be the number of braces B whose multiplicative group (B, \circ) is a generalised quaternion group of order $4 m$. Then

$$
q(4 m)= \begin{cases}2 & \text { if } m \text { is odd } \\ 7 & \text { if } m \equiv 0 \quad(\bmod 8) \\ 9 & \text { if } m \equiv 4 \quad(\bmod 8) \\ 6 & \text { if } m \equiv 2 \quad(\bmod 8) \text { or } m \equiv 6 \quad(\bmod 8)\end{cases}
$$

Some remarks:

(1) This is about (classical) braces, i.e. the additive group is abelian
(2) Rump (2020) gave a partial proof, showing $q\left(2^{n}\right)=7$ for $n \geq 5$.
(3) The "odd part" of m does not make a difference to $q(4 m)$. Why?
(4) What about dihedral braces? What about Hopf-Galois structures?

Introduction

Conjecture: Guarnieri \& Vendramin (2017):
Let $m \geq 3$ and let $q(4 m)$ be the number of braces B whose multiplicative group (B, \circ) is a generalised quaternion group of order $4 m$. Then

$$
q(4 m)= \begin{cases}2 & \text { if } m \text { is odd } \\ 7 & \text { if } m \equiv 0 \quad(\bmod 8) \\ 9 & \text { if } m \equiv 4 \quad(\bmod 8), \\ 6 & \text { if } m \equiv 2 \quad(\bmod 8) \text { or } m \equiv 6 \quad(\bmod 8)\end{cases}
$$

Some remarks:

(1) This is about (classical) braces, i.e. the additive group is abelian
(2) Rump (2020) gave a partial proof, showing $q\left(2^{n}\right)=7$ for $n \geq 5$.
(3) The "odd part" of m does not make a difference to $q(4 m)$. Why?
(4) What about dihedral braces? What about Hopf-Galois structures?

I will outline a full proof of the conjecture, with corresponding results for dihedral braces and for Hopf-Galois structures: details in the preprint B+Ferri (2024).

Counting braces and HGS via regular subgroups

If $(B,+, \circ)$ is a brace, we can embed (B, \circ) into $\operatorname{Hol}(B,+)=B \rtimes \operatorname{Aut}(B)$ as a regular subgroup by $b \mapsto\left(b, \lambda_{b}\right)$ with $\lambda_{b}(c)=-b+b \circ c$.
Conversely, if G is a regular subgroup in $\operatorname{Hol}(N)$ for an abelian group $(N,+)$, write g_{η} for the unique element of G moving 0_{N} to η. Then B becomes a brace where $g_{\eta \circ \eta^{\prime}}=g_{\eta} g_{\eta}^{\prime}$. Two regular subgroups give isomorphic braces if they are conjugate by an element of $\operatorname{Aut}(N)$.

Counting braces and HGS via regular subgroups

 If $(B,+, \circ)$ is a brace, we can embed (B, \circ) into $\operatorname{Hol}(B,+)=B \rtimes \operatorname{Aut}(B)$ as a regular subgroup by $b \mapsto\left(b, \lambda_{b}\right)$ with $\lambda_{b}(c)=-b+b \circ c$.Conversely, if G is a regular subgroup in $\operatorname{Hol}(N)$ for an abelian group $(N,+)$, write g_{η} for the unique element of G moving 0_{N} to η. Then B becomes a brace where $g_{\eta \circ \eta^{\prime}}=g_{\eta} g_{\eta}^{\prime}$. Two regular subgroups give isomorphic braces if they are conjugate by an element of $\operatorname{Aut}(N)$.

The Hopf-Galois structures on a Galois extension L / K with Galois group G correspond (via the Greither-Pareigis theorem) to regular subgroups N in $\operatorname{Perm}(G)$ normalised by the left translations $\lambda(G)$. We call N the type of the Hopf-Galois structure. Transporting the structure of G to N, we find that the number of Hopf-Galois structures on L / K of type N is

$$
\frac{|\operatorname{Aut}(G)|}{|\operatorname{Aut}(N)|} \times(\text { Number of regular subgroups } \cong G \text { in } \operatorname{Hol}(N)) .
$$

Counting braces and HGS via regular subgroups

 If $(B,+, \circ)$ is a brace, we can embed (B, \circ) into $\operatorname{Hol}(B,+)=B \rtimes \operatorname{Aut}(B)$ as a regular subgroup by $b \mapsto\left(b, \lambda_{b}\right)$ with $\lambda_{b}(c)=-b+b \circ c$.Conversely, if G is a regular subgroup in $\operatorname{Hol}(N)$ for an abelian group $(N,+)$, write g_{η} for the unique element of G moving 0_{N} to η. Then B becomes a brace where $g_{\eta \circ \eta^{\prime}}=g_{\eta} g_{\eta}^{\prime}$. Two regular subgroups give isomorphic braces if they are conjugate by an element of $\operatorname{Aut}(N)$.

The Hopf-Galois structures on a Galois extension L / K with Galois group G correspond (via the Greither-Pareigis theorem) to regular subgroups N in $\operatorname{Perm}(G)$ normalised by the left translations $\lambda(G)$. We call N the type of the Hopf-Galois structure. Transporting the structure of G to N, we find that the number of Hopf-Galois structures on L / K of type N is

$$
\frac{|\operatorname{Aut}(G)|}{|\operatorname{Aut}(N)|} \times(\text { Number of regular subgroups } \cong G \text { in } \operatorname{Hol}(N)) .
$$

So we will be interested in quaternion/dihedral regular subgroups in $\operatorname{Hol}(N)$ for an abelian group N.

The 2-power case

 Recall (Featherstonhaugh): If p prime and $r<p$ then $\operatorname{Hol}\left(C_{p}^{r}\right)$ contains no element of order p^{2}.
The 2-power case

Recall (Featherstonhaugh): If p prime and $r<p$ then $\operatorname{Hol}\left(C_{p}^{r}\right)$ contains no element of order p^{2}.

A generalisation of this is:
Lemma: Let N be a finite abelian p-group of rank r and exponent p^{d}. If $\operatorname{Hol}(N)$ contains an element of order p^{k} then $k<\left\lceil\log _{p}(r+1)\right\rceil+d$.

The 2-power case

Recall (Featherstonhaugh): If p prime and $r<p$ then $\operatorname{Hol}\left(C_{p}^{r}\right)$ contains no element of order p^{2}.

A generalisation of this is:
Lemma: Let N be a finite abelian p-group of rank r and exponent p^{d}. If $\operatorname{Hol}(N)$ contains an element of order p^{k} then $k<\left\lceil\log _{p}(r+1)\right\rceil+d$.
Since a quaternion or dihedral group of order 2^{n} contains an element of order 2^{n-1}, we deduce:
Corollary: Let N be an abelian group of order 2^{n} with $n \geq 2$. Suppose that there is a regular quaternion or dihedral subgroup of $\operatorname{Hol}(N)$. Then N must be one of the following groups:

- $C_{2^{n}}$ for $n \geq 2$;
- $C_{2} \times C_{2^{n-1}}$ for $n \geq 2$;
- $C_{4} \times C_{2^{n-2}}$ for $n \geq 3$;
- $C_{2} \times C_{2} \times C_{2^{n-2}}$ for $n \geq 3$;
- $C_{2} \times C_{2} \times C_{2} \times C_{2^{n-3}}$ for $n \geq 4$.

Omitting small values of n, we look for regular quaternion/dihedral subgroups in $\operatorname{Hol}(N)$ for each N, and obtain the following counts.

G	N		\# regular subgroups	\# braces	\# HGS
$Q_{2^{n}}$ or $D_{2^{n}}$	$C_{2^{n}}$	$n \geq 4$	1	1	2^{n-2}
$Q_{2^{n}}$ or $D_{2^{n}}$	$C_{2} \times C_{2^{n-1}}$	$n \geq 5$	8	6	2^{n+1}

with no regular quaternion/dihedral subgroups for $N=C_{4} \times C_{2^{n-2}}$, $C_{2} \times C_{2} \times C_{2^{n-2}}$ or $C_{2} \times C_{2} \times C_{2} \times C_{2^{n-3}}$ when $n \geq 5$.

Omitting small values of n, we look for regular quaternion/dihedral subgroups in $\operatorname{Hol}(N)$ for each N, and obtain the following counts.

G	N		\# regular subgroups	\# braces	\# HGS
$Q_{2^{n}}$ or $D_{2^{n}}$	$C_{2^{n}}$	$n \geq 4$	1	1	2^{n-2}
$Q_{2^{n}}$ or $D_{2^{n}}$	$C_{2} \times C_{2^{n-1}}$	$n \geq 5$	8	6	2^{n+1}

with no regular quaternion/dihedral subgroups for $N=C_{4} \times C_{2^{n-2}}$, $C_{2} \times C_{2} \times C_{2^{n-2}}$ or $C_{2} \times C_{2} \times C_{2} \times C_{2^{n-3}}$ when $n \geq 5$.

For $n=3$ and $n=4$, we used MAGMA:

G	N	\# reg subgp	\# braces	\# HGS
Q_{8}	C_{8}	1	1	6
Q_{8}	$C_{2} \times C_{4}$	2	1	6
Q_{8}	$C_{2} \times C_{2} \times C_{2}$	14	1	2
D_{8}	C_{8}	1	1	2
D_{8}	$C_{2} \times C_{4}$	14	5	14
D_{8}	$C_{2} \times C_{2} \times C_{2}$	126	2	6
Q_{16}	C_{16}	1	1	4
Q_{16}	$C_{2} \times C_{8}$	8	4	16
Q_{16}	$C_{4} \times C_{4}$	48	2	16
Q_{16}	$C_{2} \times C_{2} \times C_{4}$	48	1	8
Q_{16}	$C_{2} \times C_{2} \times C_{2} \times C_{2}$	5040	1	8
D_{16}	C_{16}	1	1	4
D_{16}	$C_{2} \times C_{8}$	16	6	32
D_{16}	$C_{4} \times C_{4}$	0	0	0
D_{16}	$C_{2} \times C_{2} \times C_{4}$	0	0	0
D_{16}	$C_{2} \times C_{2} \times C_{2} \times C_{2}$	0	0	0

The general (i.e. non-2-power) case:
Let $n \geq 2, s \geq 3$ with s odd, and let $(N,+)$ be an abelian group of order $2^{n} s$. Then we have canonical decompositions

$$
\begin{gathered}
N=N_{s} \times N_{2}=\left\{(a, b): a \in N_{s}, b \in N_{2}\right\}, \\
\operatorname{Hol}(N)=\operatorname{Hol}\left(N_{s}\right) \times \operatorname{Hol}\left(N_{2}\right)
\end{gathered}
$$

where $\left|N_{s}\right|=s,\left|N_{2}\right|=2^{n}$.

The general (i.e. non-2-power) case:

Let $n \geq 2, s \geq 3$ with s odd, and let $(N,+)$ be an abelian group of order $2^{n} s$. Then we have canonical decompositions

$$
\begin{gathered}
N=N_{s} \times N_{2}=\left\{(a, b): a \in N_{s}, b \in N_{2}\right\}, \\
\operatorname{Hol}(N)=\operatorname{Hol}\left(N_{s}\right) \times \operatorname{Hol}\left(N_{2}\right)
\end{gathered}
$$

where $\left|N_{s}\right|=s,\left|N_{2}\right|=2^{n}$.
Let $G=\left\{\left(\eta, \lambda_{\eta}\right): \eta \in N\right\}$ be a regular quaternion/dihedral subgroup of $\operatorname{Hol}(N)$. Then G determines an operation \circ on N so that $(N,+, \circ)$ is a quaternion/dihedral brace.

The general (i.e. non-2-power) case:

Let $n \geq 2, s \geq 3$ with s odd, and let $(N,+)$ be an abelian group of order $2^{n} s$. Then we have canonical decompositions

$$
\begin{gathered}
N=N_{s} \times N_{2}=\left\{(a, b): a \in N_{s}, b \in N_{2}\right\}, \\
\operatorname{Hol}(N)=\operatorname{Hol}\left(N_{s}\right) \times \operatorname{Hol}\left(N_{2}\right)
\end{gathered}
$$

where $\left|N_{s}\right|=s,\left|N_{2}\right|=2^{n}$.
Let $G=\left\{\left(\eta, \lambda_{\eta}\right): \eta \in N\right\}$ be a regular quaternion/dihedral subgroup of $\operatorname{Hol}(N)$. Then G determines an operation \circ on N so that $(N,+, \circ)$ is a quaternion/dihedral brace.

Then $G_{s}:=\left\{\left(\eta, \lambda_{\eta}\right): \eta \in N_{s}\right\}$ is a subgroup of G of order s and (because G is quaternion/dihedral) must be normal in G and cyclic. The image of G_{s} in $\operatorname{Hol}\left(N_{s}\right)$ is a regular subgroup of $\operatorname{Hol}\left(N_{s}\right)$, and gives rise to an operation \circ_{s} on N_{s} making ($N_{s},+, o_{s}$) into a brace. It turns out that $\circ_{s}=+$, so we get the trivial brace structure on N_{s} and $\left(N_{s},+\right)$ is also cyclic. Further, G_{s} acts trivially on N_{2}.

Likewise, let $G_{2}:=\left\{\left(\eta, \lambda_{\eta}\right): \eta \in N_{2}\right\}$. This is a Sylow 2-subgroup of G distinguished by the fact that $G<\operatorname{Hol}(N)$. The image H of G_{2} in $\operatorname{Hol}\left(N_{2}\right)$ is a regular quaternion/dihedral subgroup which determines an operation O_{H} on N_{2}, making $\left(N_{2},+, \mathrm{O}_{\mathrm{H}}\right)$ into a brace.

Likewise, let $G_{2}:=\left\{\left(\eta, \lambda_{\eta}\right): \eta \in N_{2}\right\}$. This is a Sylow 2-subgroup of G distinguished by the fact that $G<\operatorname{Hol}(N)$. The image H of G_{2} in $\operatorname{Hol}\left(N_{2}\right)$ is a regular quaternion/dihedral subgroup which determines an operation O_{H} on N_{2}, making ($\left.\mathrm{N}_{2},+, \mathrm{O}_{\mathrm{H}}\right)$ into a brace.

For each regular quaternion/dihedral subgroup H of $\operatorname{Hol}\left(N_{2}\right)$, let T_{H} be the set of all homomorphisms

$$
\tau:\left(N_{2}, \mathrm{O}_{H}\right) \rightarrow \operatorname{Aut}\left(N_{s}\right)
$$

such that $N_{S} \rtimes_{\tau}\left(N_{2}, \mathrm{O}_{H}\right)$ is a quaternion/dihedral group. Then, along with H, our group G gives rise to an element $\tau \in T_{H}$.

Likewise, let $G_{2}:=\left\{\left(\eta, \lambda_{\eta}\right): \eta \in N_{2}\right\}$. This is a Sylow 2-subgroup of G distinguished by the fact that $G<\operatorname{Hol}(N)$. The image H of G_{2} in $\operatorname{Hol}\left(N_{2}\right)$ is a regular quaternion/dihedral subgroup which determines an operation O_{H} on N_{2}, making ($\mathrm{N}_{2},+, \mathrm{O}_{\mathrm{H}}$) into a brace.

For each regular quaternion/dihedral subgroup H of $\operatorname{Hol}\left(N_{2}\right)$, let T_{H} be the set of all homomorphisms

$$
\tau:\left(N_{2}, \mathrm{O}_{H}\right) \rightarrow \operatorname{Aut}\left(N_{s}\right)
$$

such that $N_{s} \rtimes_{\tau}\left(N_{2}, O_{H}\right)$ is a quaternion/dihedral group. Then, along with H, our group G gives rise to an element $\tau \in T_{H}$.

Lemma: There is a bijection between regular quaterion/dihedral subgroups G in $\operatorname{Hol}(N)$ and pairs (H, τ) with $\tau \in T_{H}$. If G corresponds to (H, τ) and $\alpha \in \operatorname{Aut}\left(N_{s}\right), \beta \in \operatorname{Aut}\left(N_{2}\right)$, then $(\alpha, \beta) G(\alpha, \beta)^{-1}$ corresponds to $\left(\beta H \beta^{-1}, \beta \cdot \tau\right)$ where $(\beta \cdot \tau)_{b}=\tau_{\beta^{-1}(b)}$.

Likewise, let $G_{2}:=\left\{\left(\eta, \lambda_{\eta}\right): \eta \in N_{2}\right\}$. This is a Sylow 2-subgroup of G distinguished by the fact that $G<\operatorname{Hol}(N)$. The image H of G_{2} in $\operatorname{Hol}\left(N_{2}\right)$ is a regular quaternion/dihedral subgroup which determines an operation \circ_{H} on N_{2}, making ($\mathrm{N}_{2},+, \mathrm{O}_{\mathrm{H}}$) into a brace.

For each regular quaternion/dihedral subgroup H of $\operatorname{Hol}\left(N_{2}\right)$, let T_{H} be the set of all homomorphisms

$$
\tau:\left(N_{2}, \mathrm{O}_{H}\right) \rightarrow \operatorname{Aut}\left(N_{s}\right)
$$

such that $N_{S} \rtimes_{\tau}\left(N_{2}, \mathrm{O}_{H}\right)$ is a quaternion/dihedral group. Then, along with H, our group G gives rise to an element $\tau \in T_{H}$.

Lemma: There is a bijection between regular quaterion/dihedral subgroups G in $\operatorname{Hol}(N)$ and pairs (H, τ) with $\tau \in T_{H}$. If G corresponds to (H, τ) and $\alpha \in \operatorname{Aut}\left(N_{s}\right), \beta \in \operatorname{Aut}\left(N_{2}\right)$, then $(\alpha, \beta) G(\alpha, \beta)^{-1}$ corresponds to $\left(\beta H \beta^{-1}, \beta \cdot \tau\right)$ where $(\beta \cdot \tau)_{b}=\tau_{\beta^{-1}(b)}$.
$\left|T_{H}\right|=1$ unless $H=Q_{8}$ or $D_{4}=C_{2} \times C_{2}$, when $\left|T_{H}\right|=3$. (This is because Q_{8} and $C_{2} \times C_{2}$ have 3 subgroups of index 2.)

Putting these pieces together, if $H \neq Q_{8}, C_{2} \times C_{2}$ then the correspondence $G \leftrightarrow H$ is bijective and we get the same number of regular subgroups/braces for odd $s \geq 3$ as for $s=1$.

Putting these pieces together, if $H \neq Q_{8}, C_{2} \times C_{2}$ then the correspondence $G \leftrightarrow H$ is bijective and we get the same number of regular subgroups/braces for odd $s \geq 3$ as for $s=1$.

If $H=Q_{8}$ or $C_{2} \times C_{2}$, we need to take into account the orbits of $\operatorname{Aut}\left(N_{2}\right)$ on T_{H} : these depend on N_{2} but not on $s \geq 3$. So it suffices to check the cases Q_{24} and D_{12} in MAGMA.

N	Conditions	Quaternion braces	Dihedral braces
$C_{s} \times C_{8}$	$s \geq 3$ odd	2	1
$C_{s} \times C_{2} \times C_{4}$	$s \geq 3$ odd	3	5
$C_{s} \times C_{2} \times C_{2} \times C_{2}$	$s \geq 3$ odd	1	2
C_{8}		1	1
$C_{4} \times C_{2}$		1	5
$C_{2} \times C_{2} \times C_{2}$		1	2
$C_{s} \times C_{4}$	$s \geq 3$ odd	1	2
$C_{s} \times C_{2} \times C_{2}$	$s \geq 3$ odd	1	1
C_{4}		1	1
$C_{2} \times C_{2}$		1	1

Final count of braces

Theorem: (Conjecture of Guarnieri \& Vendramin)
Let $m \geq 3$ be an integer and let $q(4 m)$ be the number of isomorphism classes of braces with multiplicative group isomorphic to $Q_{4 m}$. Then

$$
q(4 m)= \begin{cases}2 & \text { if } m \text { is odd } \\ 6 & \text { if } m \equiv 2 \quad(\bmod 4) \\ 9 & \text { if } m \equiv 4 \quad(\bmod 8) \\ 7 & \text { if } m \equiv 0 \quad(\bmod 8)\end{cases}
$$

Theorem: Let $m \geq 3$ be an integer and let $d(4 m)$ be the number of isomorphism classes of braces with multiplicative group isomorphic to $D_{4 m}$. Then

$$
d(4 m)= \begin{cases}3 & \text { if } m \text { is odd } \\ 8 & \text { if } m \equiv 2 \quad(\bmod 4) \\ 7 & \text { if } m \equiv 4 \quad(\bmod 8) \\ 7 & \text { if } m \equiv 0 \quad(\bmod 8)\end{cases}
$$

Final count of Hopf-Galois structures

When $H=Q_{8}$ or $C_{2} \times C_{2}$, the extra factor 3 in the number of regular subgroups is compensated by a factor 3 in $|\operatorname{Aut}(H)|$ so we get the same formula (involving s) whether $s \geq 3$ or $s=1$.

N	Conditions	G quaternion	G dihedral
$C_{s} \times C_{2^{n}}$	$n \geq 5$	$2^{n-2} s$	$2^{n-2} s$
$C_{s} \times C_{2} \times C_{2^{n-1}}$	$n \geq 5$	$2^{n+1} s$	$2^{n+1} s$
$C_{s} \times C_{16}$		$4 s$	$4 s$
$C_{s} \times C_{2} \times C_{8}$		$16 s$	$32 s$
$C_{s} \times C_{4} \times C_{4}$		$16 s$	0
$C_{s} \times C_{2} \times C_{2} \times C_{4}$		$8 s$	0
$C_{s} \times C_{2} \times C_{2} \times C_{2} \times C_{2}$		$8 s$	0
$C_{s} \times C_{8}$		$6 s$	$2 s$
$C_{s} \times C_{2} \times C_{4}$		$6 s$	$14 s$
$C_{s} \times C_{2} \times C_{2} \times C_{2}$		$2 s$	$6 s$
$C_{s} \times C_{4}$		s	$3 s$
$C_{s} \times C_{2} \times C_{2}$		s	s

References:

B. + F. Ferri (2024): On the number of quaternion and dihedral braces and Hopf-Galois structures arXiv:2402.12547v2
L. Guarnieri \& L. Vendramin: Skew braces and the Yang-Baxter equation. Math. Comp. 86 (2017) no. 307, 2519-2534.
W. Rump: Classification of the affine structures of a generalized quaternion group of order ≥ 32. J. Group Theory 23 (2020) no. 5, 847-869.

